
REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources.
qatherino and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information including suggestions for reducing this burden to Washington Headquarters Service. Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

11-Jan-2000
2. REPORT TYPE

Annual Report
4. TITLE AND SUBTITLE

Annual Progress Report No. 10

6. AUTHOR(S)

Reifsnider, Kenneth,
Virginia Polytechnic Institute and State University

3. DATES COVERED (From - To)
14-11-98 to 13-11-99

5a. CONTRACT NUMBER

5b. GRANT NUMBER

N00014-99-1-0158

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

Data item #0034
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Virginia Polytechnic Institue and State University,
Blacksburg, VA 24061

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

ONR, 800 North Quincy Street, Arlington, VA 22217-5660

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

ONR 311

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Annual Report No. 10 for the NAVCIITI Program.

20000114 035
15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

43

19a. NAME OF RESPONSIBLE PERSON

Dr. Kenneth L. Reifsnider
19b. TELEPONE NUMBER {Include area code)

(540)231-9359
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI-Std Z39-18

DTIC QUALITY DfSPlC&ED 4

Navy Collaborative Integrated Information Technology Initiative

(NAVCIITI)

ONR Grant N00014-99-1-0158

Report No. 10

360 DAC

Submitted to:

Submitted by:

Mr. Paul Quinn
ONR 311
Office of Naval Research
Ballston Centre Tower One
800 North Quincy Street
Arlington VA 22217-5660

Virginia Tech
Blacksburg VA 24061

14 November 1998 - 13 November 1999

Navy Collaborative Integrated Information Technology Initiative (NAVCIITI)
This is the tenth report of the NAVCIITI program, that covers the 360 Days After Contract
(DAC) period. This report is submitted as the annual report.

1. Introduction
The long-term objective of the NAVCIITI program is to provide strong, integrated research
capabilities in broad user communications testbeds, systems engineering, fiber optic sensors and
transmission devices, secure and reliable wireless communications, effective user-friendly human
computer interfaces, and scientific visualization to the Navy community. This initiative will
improve the Navy's capabilities to support distributed computing, integrated services training,
education, information dissemination, and simulation.

The multiyear program will establish a Navy Collaborative Integrated Information Technology
Initiative (NAVCIITI, pronounced "NAV city") by creating an Advanced Communication and
Information Technology Center (ACITC), on campus at Virginia Tech, integrating and leveraging
the efforts of more than 60 investigators currently under contract to the Navy by providing
equipment and facilities for their effort, and using the collective capabilities of NAVCIITI to
support Navy initiatives in distributed computing, integrated services training, education,
information dissemination, and simulation, especially for purposes of network-centric battle
management, managing and maintaining C4ISR attributes, and enhancement of the Naval
intranet. The scope of the proposed program was developed as a result of discussions, and
briefings with a group of Navy unit leaders.

2.0 Technical Summary

The program has now completed eleven months. Major enabling equipment purchases have been
made, as outlined briefly in our fourth monthly report, and as updated in the sixth monthly report.
We have now made significant research progress using this new equipment and related facilities
on campus.

The vision of the program is to provide the precursor of development, demonstration, and
configuration of high payoff technologies in support of the Navy's Command & Control vision.
The NAVCIITI framework is based on leveraging and capitalizing university's expertise and
ongoing research in the thrust technologies and engineering in general to establish the
architecture and the interoperability of the Navy's Intranet for battle-space management. The
focus of the program is to build a prototype test bed for a Network Centric Environment (NCE) in
support of C4ISRT (Command, Control, Communication, Computing, Intelligence, Surveillance,
Reconnaissance, and Targeting). The NAVCIITI program consists of several projects covering
several thrust areas of research. Wireless secure communication will be used in NAVCIITI to
implement wireless secure LAN, wearable computers, PDAs (personal digital assistant)
interoperability with VON (Virtual Operations Network), and interaction with other platforms.
Wideband smart antennas form the front end of the network; the benefits of these devices derive
from their ability to conserve spectrum, improve the network connectivity and reduce weight and
size of the hardware. Modeling and simulation will be performed to determine the metrics of
Command & Control. The contributions of C4ISRT functionalities in the NCE will be evaluated
through mathematical modeling, visualization, communication, and collaboration tools. Platforms
(ships, aircraft, submarines are critical nodes in the NCE. NAVCIITI will construct a test bed for
the design and implementation of a Ship Information Management System (SMS).

Progress in specific areas is discussed in the following sections.

2.1 Implementation Plan for Reconfigurable Software Radio (J. Reed, P. Athanas, R. Boyle,
S.Srikanteswara -Task 1.2.1) CDRL Data Item 0006

Implementation Architecture for Soft Radio
Encoding

Srikathyayani Srikanteswara, Dr. Jeffrey H. Reed, Dr. Peter Athanas,
Dr. Robert Boyle

November 19, 1999

Abstract

While many soft/software radio architectures have been suggested
and implemented, there remains a lack of a formal design methodology
that can be used to design and implement these radios. This paper
presents a unified architecture for the design of soft radios on a recon-
figurable platform called the Layered Radio Architecture. The layered
architecture makes it possible to incorporate all of the features of a
software radio while minimizing complexity issues. The layered ar-
chitecture also defines the methodology for incorporating changes and
updates into the system. An example implementation of the layered
architecture on actual hardware is presented in the paper.

1 Introduction to Soft Radios
Software radios are evolving as flexible all-purpose radios that can implement
new and different standards or protocols through reprogramming [9, 3, 8].
Software radios give rise to the possibility of having multi-mode terminals
without the "Velcro approach" of including separate silicon for each possible
standard. Software radios can reduce the cost of manufacturing and test-
ing, while providing a quick way to upgrade the product to take advantage
of newer signal processing techniques and new wireless phone applications.
The ideal software radio has a set of features that are not yet realizable in
commercial systems due to limitations in current technology and cost consid-
erations. Specifically, DSP microprocessors are not fast enough to implement
all radio functions and thus some dedicated Application Specific Integrated
Circuits (ASIC) are required. This is a consequence of processing speed being
traded for flexibility and efficiency.

In this paper the term soft radio denotes a completely configurable radio
that can be programmed in software to reconfigure physical hardware. In
other words, the same piece of hardware can be modified to perform different
functions at different times. This allows the hardware to be specifically
tailored to the application at hand, resulting in greatly increased speed and
silicon efficiency, while maintaining a high degree of flexibility.

Although most researchers agree on the advantages of the soft radio, there
is a lack of a general design methodology for soft radio architectures. Most
practical implementations are based on ad-hoc approaches that can only be
used for few specific systems. In this paper a formal architecture for soft
radios called the layered radio architecture is developed for reconfigurable
platforms.

2 Design Issues in a Soft Radio
A number of papers describe various software radio architectures and design
considerations [1, 9, 3, 8]. The key design issues include design of fast and
efficient A/D converters, flexibility at the RF front end, effective data man-
agement procedures, resource allocation and smooth reconfigurability of the
hardware. The A/D and the flexible RF front end are extremely challenging
to design, particularly for a handset, and set the limitations of dynamic range
and bandwidth. The design issues involving the A/D converter and the RF
design are beyond the scope of this paper but are covered in [11, 5].

A soft radio is a complex entity that needs to handle very high data
rates efficiently. To process data efficiently entails good computing resource
allocation. There are very important differences in the resource allocation
of a system implemented in dedicated hardware and the same system im-
plemented in a soft radio. While both approaches strive for compactness
and power efficiency, a soft radio design requires additional flexibility and
reusability, which impacts the partitioning of a process into its hardware
components. This resource allocation is also closely related to the data flow
properties of the system since data has to be processed with minimal delays
and overheads.

Another important design issue is the smooth reconfiguration of the ra-
dio, including the ability of run-time reconfiguration and over-the-air up-
dates. Smooth reconfiguration is necessary to minimize delays and make the
system robust and easy to handle. The reconfigurable feature of a soft ra-
dio gives rise to some secondary design issues like reusability of hardware,
scalability, and processing power. For mobile communication systems, power
consumption is an important issue. Reusability of hardware supporting mul-
tiple communication standards is what makes a soft radio efficient in terms
of silicon utilization.

A soft radio should be inherently scalable, both at the system level and
at the hardware element level. Hardware scalability supports the easy addi-
tion of more computational hardware, ideally as easily as adding additional
memory to a conventional processor. At the system level, the radio has to
be conducive to replication, i.e., it should be easy to add channels to support
more users. Finally, the hardware platform must provide high-rate compu-
tational processing.

Soft Radio Research and Commercialization

DARPA's Adaptive Computing Systems Project: Development of Com-
mercial Off The Shelf (COTS) hardware components, design, programming, and
runtime environments to enable an application to reach through to the hardware
layer and directly manipulate the datapath-level architecture at runtime to optimize
the application-level performance; exploration of new techniques that result in
rapid realization of algorithm-specific hardware architectures on a low-cost COTS
technology base. http://vrwwAarpa.mil/ito/reswTch/acs/index.html.

Virginia Tech: Research in developing algorithms and architectures for soft radios
under the sponsorship of DARPA's GloMo I & II projects. Implementation of a mul-
tiuser receiver based on reconfigurable computing under GloMo I [2]. Development
and implementation of a generic soft radio architecture for reconfigurable hardware
under GloMo II. http://www.mprg.ee.vt.edu/research/glomo/index.html.

UC Berkeley: Work on Pleiades, part of the Adaptive Computing Systems project
to achieve ultra-low power, high-performance multimedia computing through the
reconfiguration of heterogeneous system modules. Achievement of high power
efficiency by providing programmability at the right granularity and exploiting other
energy reducing techniques, such as parallelism, pipelining, and dynamic voltage
scaling. http://bwTC.eecs.berkeley.edu/Research/ConfigumbleArchitectures.

Brigham Young University: Development of JHDL, a Java-based Hardware
Description Language to facilitate hardware synthesis in reconfigurable processors.
http://jhdl. ee. byu. edu/docs/jhdlDocs.htmi

Chameleon Systems Inc.: Development of reconfigurable processor platform
architecture to reduce tradeoff between performance and flexibility needed in wireless
base sta.tions.http://www.chameleonsystems.com/newspg.htm.

Morphic Inc.: Programmable hardware reconfigurable core using Dynamically
Reconfigurable Logic (DRL) to replace multiple hardwired logic cores in wireless
baseband processors, http://www.morphics.com/html/tech.html.

Quicksilver Technology Inc.: The Wireless Universal 'Ngine, or WunChip
supports a variety of baseband algorithms that are downloaded from software.
http://www. quicksilvertech. com

Sirius Inc.: Software-reconfigurable CDMAx test chip supports mobile station and
base station configurations; can also be reconfigured as a GPS navigation baseband
receiver and as a Satellite UMTS transceiver coie.http://www.siriuscomm.com.

While most researchers agree on the usefulness of the soft/software radio
and most of its desirable features, there is a lack of general design methodol-
ogy applicable to reconfigurable systems. Most designs are based on ad hoc

approaches which are only appropriate for the problem at hand. There is a
lack of a formal design methodology needed for the systematic realization of
soft radios. Though much work is being done in the software and network
layers of the soft radio, there has been little progress in the development of
a generic hardware architecture for a soft radio.

In this paper we develop a formal design philosophy and methodology for
a soft radio architecture. We show that the architecture can handle complex
data processing with efficient resource allocation, while maintaining hardware
reusability, flexibility, and scalability. The design methodology is illustrated
with an example that has been implemented in hardware.

3 The Layered Radio Architecture

3.1 Overview of the Layered Radio Architecture

The approach to designing a reconfigurable radio using hardware paging is
formalized in the layered radio architecture. Hardware paging refers to hard-
ware modules being paged in and out of the system in a manner similar
to software paging performed with the use of virtual memory. The layered
architecture leverages on stream-based processing where a common bus is
used for data as well as programming information. A few bits within the bus
are reserved for the header, which indicates the nature of the stream packet.
The use of the stream-based processing simplifies the interface between mod-
ules, making it easy to replace one module with another or add additional
modules. The use of a reconfigurable hardware platform enables hardware
paging. The architecture can handle complex data processing with efficient
resource allocation, while maintaining hardware reusability, flexibility, and
scalability.

The functionality of the radio is divided into layers, where each layer
attaches/modifies the header and passes the information to the next layer.
Once the processing is complete, the information is sent back through the
layers in the same way. The layered radio architecture defines three layers
(Figure 2), the Soft Radio Interface (SRI) layer, the configuration layer,
and the processing layer. The application software residing above all these
layers consists of high-level graphics and software that interface the radio
with the user. The three layers of the soft radio are implemented using
stream-based processing. The SRI layer is responsible for interfacing the
radio hardware with the external world, coordinating the various sources of
information coming in and going out of the radio, prioritizing the requests
made to the radio, and packetizing the incoming information before sending
it to the lower layers. The information coming into the radio can be either
data, or programming information requesting a new setup of the radio, or a
modification to the existing setup. The setup of a new system is handled as
follows.

The SRI layer contains the system-level description of various radio con-
figurations in its local memory. Each system-level description contains a list
of all the algorithms in the appropriate order needed to implement the sys-

tern. It is important to note that the SRI layer does not contain the bits
needed to configure the hardware. Rather, it contains the codes for the al-
gorithms that are to be used and their sequence of interconnection. The
configuration layer has in its memory the actual bits needed to configure the
processing layer hardware. The configuration layer extracts the configura-
tion bits from its memory based on the programming packets sent by the
SRI layer. The processing layer consists of a series of reconfigurable modules
called processing modules that perform the actual operations on the data to
implement the functionality of the radio (Figure 3). Each processing module
has a static and a reconfigurable section, where the static section configures
the reconfigurable section based on the programming packets sent by the
configuration layer. Once the radio is configured, data is packetized by the
SRI layer and sent to the lower layers using the same bus used for the pro-
gramming packets. After completion of processing, data is sent back through
the configuration layer to the SRI layer, which in turn de-packetizes the data
and outputs it to the host PC.

3.2 Use of Stream-Based Processing in the Layered
Architecture

The soft radio architecture being developed at Virginia Tech is based on a
concept called stream-based processing. A stream is a packet of known, length
containing either programming (configuration) information or the data to be
processed. Stream-based processing provides a means to exploit the process-
ing power attainable through deep pipelining, while still maintaining some
degree of flexibility [6]. The algorithm to be implemented is first represented
as a data flow graph. The data flow graph is then decomposed into smaller
computational primitives called processing modules. Each processing mod-
ule performs a unique subset of the overall processing on the data and then
passes the data and control information to the next module. An analogy
can be drawn to an assembly line process where each module performs a
specific task as the component moves forward in the assembly line, as shown
in Figure 1.

4 Implementation of the Layered Approach

4.1 Soft Radio Interface Layer

The Soft Radio Interface (SRI) layer receives the incoming digitized RF data
and control information from the host PC that contains the desired config-
uration and settings of the radio. The SRI layer transmits processed data
to the host PC, performs initialization of the system on power-up and per-
forms the first step in configuring the radio. This layer has the system level
description of the desired radio configuration in its local memory, which con-
tains the algorithm codes for each processing module needed to implement
the system. This system level description is sent to the configuration layer,
which in turn configures the processing layer modules.

The incoming data to the SRI layer is either from the A/D converter
(which always provides data) or control and status requests from the host
PC. Once the user decides on the algorithms to be used, the SRI layer inserts
the corresponding codes and forwards it to the configuration layer. Data that
follows will be processed using these preset algorithms until the user decides
to change the configuration of the system. Control packets containing over-
the-air updates are used to change the configuration of the library. The
requests from the PC (control information), as well as data from the A/D, is
buffered and prioritized by the SRI layer and sent to the configuration layer.

The stream packets received by the SRI layer from the configuration layer
have more information in them. The configuration layer sends the processed
data back to the SRI layer along with other status and error messages. First,
the SRI layer checks to see if the data contained in the packet is valid. If it is
valid and the packet contains data, it is sent to the host PC, along with error
messages if any. When the SRI layer sends program or control information
that was requested by the host PC to the configuration layer, the packets
from the configuration layer will contain acknowledgments that indicate if
the operation was successful. These messages can either be sent back to the
host PC or the SRI layer can re-transmit the control packets.

4.2 Configuration Layer

The information from the SRI layer indicates whether the packet is a control
or data packet. If it is the former, the packet contains the algorithm codes
of the desired configuration. For example, the control packet may request a
DQPSK demodulator followed by a Viterbi decoder. The appropriate config-
uration code is extracted from the local memory and sent to the processing
layer with the address/addresses of the processing layer module/modules.
The local memory contains a table that has the addresses of the stored con-
figuration code for each operation. The configuration layer also maintains
a status list of the processing layer modules. When the configuration layer
receives a data packet, the configuration layer headers are attached to the
data and sent to the processing layer. Data coming in from the processing
layer is sent back to the SRI layer for appropriate action.

4.3 Processing Layer

The processing layer forms the core of the soft radio that performs the actual
processing of data. This layer is responsible for processing data sent from the
configuration layer and sending the processed data back to the configuration
layer. It consists of a set of linearly connected processing modules, as shown
in Figure 3. Each processing module has the capability of reconfiguring
itself to perform the desired function without disrupting synchronization in
the main pipeline. The main flow of data is in the forward direction from
the first to last module, as shown in Figure 3. Each processing element
maintains the continuity of this stream pipeline at all times. Each processing
element has both, a static and a reconfigurable section. The static sections

have the capability of configuring the reconfigurable section using the control
packets sent by the configuration layer. Data can thus either bypass each
processing element entirely or be routed through the reconfigurable section
for processing. The structure and operation of the processing element is
described in the next section.

Many communication circuits have feedback loops. To accommodate such
systems, the stream pipeline is designed to be bi-directional in the process-
ing layer. The input/output ports of the processing element can either be
implemented as bi-directional ports or can have a separate bus in the reverse
direction. The reverse slots/reverse buses are used to implement feedback
loops. If the ports are bi-directional, the main clock cycle is divided into
forward and reverse slots, and the directions of the interconnections are re-
versed in the reverse slots. If a separate reverse bus is used, then with every
clock cycle, a module both accepts and outputs a forward and reverse packet
to the neighboring module. Reverse packets are not needed in the absence
of feedback loops.

When valid data enters an appropriate module, it is processed and sent
to the next module. The address field is updated to indicate the next module
that needs to act on the data. Similarly, if there is control information in
the packet for the module, the corresponding code is executed to change
the configuration of the reconfigurable section. If there is any latency while
the module is being reconfigured, the static portion of the module buffers
the subsequent incoming data and sends out idle packets. However, if it
gets control packets intended for modules further down the chain, then those
packets are bypassed and sent to the next module. Thus the continuity of
the stream is maintained at all times.

Data in the stream packet is sent to the processing pipeline. At the end
of the processing pipeline, the packet is reconstructed, and error or status
messages if any are added to the header. When the processing is completed,
data is sent from the output module back to the configuration layer and
finally to the SRI layer that delivers the output data. If the packet contains
program information, the module checks to see if the address on the header
matches the module address. If so, the code present in the body of the packet
is executed in the configuration pipeline, thereby changing the configuration
of the processing pipeline. It is also possible to have special error packets to
handle more serious errors. If an error occurs in the execution of the code,
the module sends a signaling packet indicating the location and nature of
the error to the configuration layer. The address field is set to a special
value so that none of the succeeding processing modules intercept the packet
containing the error message.

4.3.1 Structure of the Processing Element

The functional description of each processing module is shown in Figure 4.
Running on each processing element are three sets of pipelines and a state
machine that interprets how the packet is channeled through the pipelines.
The processing pipeline processes the data, i.e., performs an operation on

the data as part of the demodulation process. The configuration pipeline
controls the hardware configuration of the processing pipeline. The ability
of the configuration pipeline to execute programming information makes it
possible to modify the low-level parameters and functionality through high-
level software. The bypass pipeline allows the packet to bypass the module
if the packet is not intended for the module. The bypass pipeline Is present
to ensure that the module does not corrupt data it is not supposed to act on.
It is important that each of these pipelines have the same amount of delay,
so that the packets are synchronized with the main clock cycle. At the end
of the pipeline, the stream packet is reconstructed with the updated header
and routed to the next module.

Figure 4 gives a functional description of the processing module, which
varies slightly when implemented in hardware. The static sections are iden-
tical in all processing modules. The static section of the processing module
consists of a packet interpreter, configuration pipeline, and packet reconstruc-
tor. The packet interpreter is essentially a switch. By looking at the header
bits, all control packets are sent to the configuration pipeline and all data and
signaling packets are sent to the processing pipeline. The function of each of
these packets is described in Section 3.2. The configuration pipeline accepts
all the control packets and has the capability to configure the processing
pipeline accordingly. The modules maintain the configuration to which they
are set and act accordingly on valid data until the configuration is changed.
The packet reconstructor accepts data from all the pipelines, buffers them if
needed, and sends them out to the next module. The processing pipeline is
located in the reconfigurable section of the processing module. The reconfig-
urable section of the processing module also contains a data interpreter and
data reconstructor that takes care of the byte ordering for the data going in
and coming out of the processing pipeline.

When a stream packet enters a processing module, the module interprets
the packet and performs the necessary action. The processing element ex-
amines the contents of a packet only if the valid bit is set. The valid bit is
introduced to maintain synchronization between the modules. Every clock
cycle, each processing element accepts a packet and sends out a packet. How-
ever, the module acts on the packet only if the valid bit is set. Similarly, a
module sends out an invalid packet instead of inserting wait states.

4.4 Implementation of an Adaptive Single-User CDMA
Receiver

At Virginia Tech, the layered architecture was used to develop a single-user
CDMA receiver with an LMS equalizer and differential BPSK demodulation.
The receiver was designed using adaptive filtering that performs both de-
spreading and equalization. The parameters which can be varied include the
equalizer algorithm, filter length, spreading code and step size. The receiver
was implemented on the Giga OPS, G900 Board by Spectrum, that holds the
XC4028EX-series of Xilinx FPGAs, operating at a modest 1.25 MHz. The
RF front-end filtered, amplified, and mixed the received signal down to an

10

IF of 68 MHz. The IF was fed into the Harris digital downconverter on the
Sigtek. evaluation board, ST-114, where it was sampled by the on-board A/D
converter. The signal was then digitally downconverted to baseband, and
the chip rate was decimated to 1 MHz. A picture of the receiver is shown in
Figure 5 which shows the transmitter, the ST-114 Sigtek evaluation board,
and the G900 Board by Spectrum. The output of the ST-114 was the com-
plex envelope of the received signal. It consisted of two sixteen-bit buses,
which represent the in-phase and quadrature channels.

Due to limitations in the hardware, the SRI and configuration layers were
combined into one unit called the input module. The processing modules
consisted of the adaptive filter and decision module, and the acquisition and
tracking module. The main clock was divided into eight slots with four for-
ward slots, two reverse slots and two guard slots. The guard slots were present
to prevent two modules from outputting data to the same bus simultaneously,
when the direction of data flow was reversed. The forward slots were used
to transmit data and programming packets. The reverse packets were used
for feedback including synchronization and timing information. The process-
ing modules were implemented using the structure shown in Figure 4. The
length of the adaptive filter, convergence factor of the LMS algorithm, and
the user spreading code could be varied in the receiver system.

On power up, the address bits of all the processing modules were set to
0. Subsequently address initializations were performed using programming
packets sent by the input module. When the first processing module en-
countered a valid programming packet, the module assigned itself the new
address and set the invalid bit in the stream before sending the packet to the
next module. This ensured the other modules did not get the same address.
When the next programming packet with a new address was sent by the
input module, the first module does not act on it, since its address is now
non-zero. The next un-initialized module assigns itself the new address and
the process continues until all the modules have a unque non-zero address.
The next set of programming packets perform other initilaizations including
setting the user spreading code, filter length, etc. Data is sent through the
system after completion of all programming.

The implementation on hardware consumed about 300,000 gates. The im-
plementation also indicated the need for more sophisticated hardware with
run-time reconfiguration capabilities for successfully implementing the lay-
ered radio architecture. The hardware requirements are further elaborated
in Section 5.

4.5 Advantages and Tradeoffs in the Layered Archi-
tecture

A number of wireless standards have emerged in the recent years. However,
when third generation (3G) systems are launched, they will have to co-exist
with second and even first generation wireless systems [7]. The proposed 3G
systems differ from existing standards in their modulation formats, channel
coding, multiple access, etc. There is a need for reconfigurable, multiband,

11

multimode terminals and base stations that can accommodate mobile users
across different standards. Reconfigurability thus becomes extremely impor-
tant in soft radios. It is not adequate that the radio be configured only
in software, but the hardware itself has to be reconfigurable to be able to
implement a wide variety of standards. The layered radio architecture de-
fines the methodology to do this using hardware paging, without making any
assumptions on the actual algorithms used in the standards. The layered ra-
dio arhcitecture can thus be used as a general methodology to design any
multimode radios.

The layered architecture provides the framework for building a flexible
soft radio at the expense of the overhead for packetizing data. It is possible to
implement radically different radios on the same hardware platform through
the use of this architecture. Additionally, the architecture is conducive to the
implementation of adaptive modulation schemes, achieved by reconfiguring
the hardware in real-time.

One of the main advantages of the architecture is its excellent hardware
reusability. For example, core units like BPSK and QPSK demodulators can
be used in a wide variety of standards when built in hardware with the right
parameters. Thus it is possible to build libraries of hardware functions much
like building libraries of software functions.

The layered architecture has good data flow properties and a simple in-
terface between the processing layer modules, which make it scalable at the
system level as well as the hardware element level. The use of stream-based
processing ensures that each processing module has one input and output bus
that is common for control information and data bits. This simplifies the in-
terface between two processing modules and makes it easy to add additional
hardware modules or integrate designs from different engineers.

Over-the-air updates can be performed by changing the contents of the
libraries of the SRI configuration layers, which can be accomplished by two
different approaches. The actual bit files stored in the libraries can be trans-
mitted to the radio and each layer modifies its library based on the program-
ming information accompanying it. This approach, however, requires the
transmitter to have prior information about the specifics of the hardware,
which could be vendor-dependent. This approach, thus, may not be the
most commercially viable solution. Alternatively, some standardized high-
level programming language can be used to transmit the code to the radio.
The SRI layer then compiles the code to generate the bit files needed for
that radio. The SRI layer modifies its own library contents using the newly
generated bit files. The SRI layer also packetizes the bit files corresponding
to the configuration layer and assembles them into appropriate programming
packets. The second approach requires a hardware compiler in the SRI layer.

5 Insight into Hardware Development
The layered radio architecture makes certain assumptions about the process-
ing layer in addition to the hardware being reconfigurable. The configura-
tion layer should be able to reconfigure the processing modules, independent

12

of other modules. This inherently assumes partial reconfigurability of the
hardware, along with a very high reconfiguration speed. Virginia Tech has
been involved in developing a FPGA specifically suited for flexible, high-
throughput, low-power computations, called the Stallion that is based on
wormhole reconfigurable computing [4]. The architecture of the Stallion is
shown in Figure 6. It consists of six bi-directional dataports, two 8x4 meshes
of interconnected functional units, a crossbar and four hardware multipliers.
The functional units are programmed to process data while the crossbar aids
in routing data through Stallion.

The essence of wormhole run-time reconfiguration is that independent,
self-steering streams of programming information and operand data inter-
act within the architecture to perform the computational problem at hand.
The stream is self-steering, and as it propagates through the system, config-
uration information is stripped from the front of the header and is used to
program the unit at the head of the stream. Since the streams independently
guide themselves through the system using the information contained in the
stream header, the configuration process is inherently distributed. Multiple
independent streams can wind their way through the chip simultaneously.
Part of the system can be used to process data operands while any set of
neighboring unite are accepting configuration data from the header of one
or more streams, thus allowing overlap of the configuration and processing
operations, as well as partial reconfigurability. The use of Stallion for the
processing modules makes it possible to implement the full functionality of
the radio, which cannot be achieved with the use of commercial FPGAs.
With the use of Stallion, the processing modules can be partially configured
as well as configured during run-time as required by the arhcitecture

6 Conclusions
The layered architecture presents an open yet formal and unified structure for
implementing soft radios on reconfigurable platforms. The layered approach
lends itself easily to standardization of soft radio systems and also allows code
reuse. The processing modules and header information can also be easily
standardized, allowing support from a variety of vendors. One of the main
advantages of the structure of the processing modules is that the interface
between two modules is very simple. Each module is able to accept a stream
packet and send out a stream packet in the forward and reverse directions in
each cycle. The layered architecture is scalable and completely flexible.

The layered architecture is suited for today's FPGAs that support partial
reconfiguration and for tomorrow's configurable computing platforms. Vir-
ginia Tech's Stallion is one such architecture that can support the layered
architecture in an efficient manner. Flexibility, of course, is gained at the
cost of additional overhead in dealing with packetized information. Current
research at Virginia Tech focuses on the development and testing of a soft
radio based on the layered architecture and building a library of soft radio
modules.

In this paper we have presented a scheme whereby the processing modules

13

are connected in a sequential manner. Connecting the modules in a sequential
manner is a first step in designing soft radios, but a more sophisticated and
powerful approach is to network these modules in the processing layer. For
example, creating a mesh of processing modules with 4-connectivity, can
increase the processing power tremendously. This of course opens up a whole
new area of research where the stream packets no longer travel in just one
(or two) directions. This design approach would have to consider routing
aspects, packet collision and prevention, and packet ordering, which are the
same issues encountered in packet radio communication systems. However,
this change can be viewed as just an extension of the layered architecture. A
new layer, a network layer, can be inserted between the configuration layer
and the processing layer that takes care of the packet routing and collating
of information obtained from the processing layer. Other aspects of the
architecture can remain unchanged.

Acknowledgments
Support to this project was provided by the Defense Advanced Research
Projects Agency (DARPA) GloMo program, the Navy Collaborative Inte-
grated Information Technology Initiative program and Conexant Systems,
Inc.

References
[1] Peter M. Athanas, J. H. Reed and W. H. Tranter, A prototype software

radio based on configurable computing, Advancing Microelectronics, pp.
34-39, 1998.

[2] Peter M. Athanas, I. Howitt, T. Rappaport, J. H. Reed and B. Woerner,
A high capacity adaptive wireless receiver implemented with a reconfig-
urable computer architecture, ARPA GloMo Principle Investigators Con-
ference, San Diego, CA, November 1995.

[3] Mike Butler, James Providakes, Gary Blythe, The layered radio, MIL-
COM 98.

[4] Ray Bittner, Wormhole run-time reconfiguration: Conceptualization and
VLSI design of a high performance computing system, Ph.D. Dissertation,
Department of Electrical and Computer Engineering, Virginia Tech, 1997.

[5] J. K. Cavers and M. Liao, Adaptive compensation for imbalance and
adaptive losses in direct conversion tranceivers, Proceedings of the 41rt

IEEE VTC, pp. 578-83, 1991.

[6] DeCegama, Angel L., Parallel processing architectures and VLSI Hard-
ware, Englewood Cliffs, NJ, Prentice Hall, vol. 1, pp. 157-160.

14

[7] Pentti Leppanen, Jaakko Reinila, Asko Nykanen, Visa Tapio et. al., Soft-
ware radio-An alternative for the future in wireless personal and multime-
dia communications, IEEE International Conference on Personal Wireless
Communications, pp. 364-368, February 1999.

[8] Joseph Mitola, III, Software radio architecture: A mathematical perspec-
tive, IEEE Journal on Selected Areas in Communications, vol. 17, no. 4,
April 1999.

[9] Joe Mitola, The software radio architecture, IEEE Communication Mag-
azine, pp. 26-38, May 1995.

[10] Srikathyayani Srikanteswara, Peter M. Athanas, Jeffrey H. Reed and
William H. Tranter, Configurable computing for communication systems,
Proceedings of the Wireless Communications Conference, IMAPS, pp.
180-185, 1998.

[11] Hiroshi Tsurumi and Yasuo Suzuki, Broadband RF stage architecture
for software-defined radio in handheld terminal applications, IEEE Com-
munications Magazine, pp. 90-95, February 1999.

7 Figures

Figure 1: Stream-based processing

15

Data from A/D
Converter

Control Information
(Architecture Information,

Parameters)

'Data, Signaling

v Packets

' Algorithm,
Functionality o:
\ Each Module

Binary
■^Translation/1

Processing Modules

Figure 2: Layered architecture

Flow of data

From
configuration

layer

To
configuration

layer

Reconfigurable hardware

Figure 3: Processing elements in the processing layer

Core Computing Unit

/Header Bits

Figure 4: Functional description of a processing element

16

Figure 5: Single-user CDMA receiver with adaptive filtering

Allocable Resources

Figure 6: Architecture of Stallion reconfigui

17

2.2 Recommendation for Radiating Elements, and collaboration with Navy partners (Warren.
Stutzman, Tasks 1.2.2, and 1.5.1) CDRL Data Item 009, 0029
1. Foursquare Element Research

The Virginia Tech Antenna Group modeled the Foursquare element using the FDTD (Finite
Difference Time Domain) commercial code Fidelity. The computer model of the radiating
element is very similar to a hardware model constructed by the Antenna Group except for
differences in the substrate thickness and the ground plane. The values calculated using
Fidelity are plotted in Fig. 1-1. The results obtained for the Foursquare model using the
Fidelity code are very similar to the real element manufactured and tested by the Virginia
Tech Antenna Group. Slight differences between modeled and measured results can be
attributed to differences in substrate thickness and ground plane area. The model used 30
mils substrate thickness instead of the 28 mils substrate thickness with the hardware in order
to avoid using a large number of cells in the computer model. Also, the computer model
used an infinite ground plane instead of a finite ground plane as used in the hardware
element. However, the length of the ground plane in the hardware element is almost ten
times that of the radiating element, approximating ah infinite size condition.
Methods of increasing the bandwidth of the Foursquare element were investigated using
Fidelity by changing the substrate thickness. The ground plane spacing was fixed at U =
0.25". The substrate thickness was varied as follows: ts = 30 mils, 10.5 mils and 0 mils.
Simulation results shown in Fig. 1-2 demonstrate that a thinner substrate gives better
performance. The bandwidth of the element with ts = 30 mils is 20% for 2:1 VSWR and the
bandwidth for ts = 10.5 mils is increased to 34.4%. Without any substrate (ts = 0), a
bandwidth of 51% was achieved.
Future work will focus on investigating the effect of ground plane size on the antenna
performance. In addition, we will explore ways to reduce the antenna size while keeping on
the same antenna performance.

Antenna Impedance
200

150

100

a.
E

50

-50

-100

1 1 r

o

 1 i

- Resistance(Fidelity)
Reactance(Fidelity)
Resistance(Measured)

x Reactance(Measured)

/

;..0g J2°°^Oo0oc >o^ :.^\
■

"^95p3oo0oo£Oi
\ * X A „ x x ' x x x . -

tj, - .

•

i i J 1 M,

4 4.5 5 5.5 6 6.5
Frequency, GHz

7.5 8

(a) Antenna input impedance

18

VSWR

(b) VSWR
Figure 1-1 Comparison of measured and simulation results for the impedance and VSWR of
a Foursquare element.

CD

Antenna Resistance for various ts with td=0.25"
 ts=30mils
O ts=28 mils(Measured)
-*- ts=10.5 mils
— ts=0

200 1 — I ! I

150 .

100

50

JjgJM^L» >-. \~sCrfy'., /'
fx>r- '■ *®G

ill' 1 1 1

CO o c
2 u
CO
CD

<r

100

50

-100

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
Frequency,. GHz Frequency,, lai-iz

Antenna Reactance for various ts with td=0.25
—i 1 1 1 — ts=30 mils

O ts=28 mils(Measured)
-*- ts=10.5 mils

ts=0

(a) Antenna input impedance

19

VSWR for various ts with td=0.25"

5.5 6 6.5 7 7.5
Frequency, GHz

(b) VSWR

Figure 1-2 Comparison of measured and simulation results for the impedance and VSWR of a Foursquare
element for various substrate thicknesses.

2. Foursquare Array Analysis

We investigated the sensitivity of the input impedance of a single Foursquare element to variations in
height above the ground plane compared to that for an element in an array. To simulate the array
effects, the Foursquare element was excited at the center of the two-by-two array configuration shown
in Fig. 2-1. The input impedance was calculated for element heights above the ground plane of h =
0.14", 0.18", 0.21", and 0.28"; see Fig. 2-2. The center frequency shifts from 7.6 GHz to 6.2 GHz for
increasing height above the ground plane. Similar trends were observed in the single Foursquare input
impedance.

Low Frequency Feed

Figure 2-1 Geometry of a four-element array of Foursquare antennas in a two-by-two
configuration.

20

iS

10D

SD

60

40

20

0

fed. 14-"
h=0.1S"
b=0.21"
h=0.28"

6 7
Frequency (GHz)

6 7

Frequency (GHz)

Figure 2-2 Calculated real and reactive input impedance for varying heights above the
ground plane for the four-element array of Foursquare antennas in the two-by-two
configuration of Fig. 2-1.

3. Equipment Acquisitions

Task 1.2.2 includes money for a near field scanner and associated equipment to measure
wideband antennas, as well as funds for software to simulate wideband antennas. All
software was acquired and put in use during the first three quarters. In the fourth quarter the
hardware was received. The antenna measurement system consists of a Hewlett Packard
vector network analyzer and an Antcom near field scanner. The network analyzer was
received and tested in August. The near field scanner was received in October and is
undergoing final testing. All equipment is now in place. Final system evaluations will begin
soon, followed by testing of the wideband antennas.

2.3 Description of a trial application (Richard Nance- Task 1.3.1) CDRL Data Item 0013
Our work over the past two months has been to get our Distributed Systems Laboratory in an
operational status. That has proved to be more difficult than we had hoped (but about the same as
expected). This laboratory will enable us to be a major player in the Virtual Operations Networks
project in Year 2.As for Year 1 (Software Quality Measurement), we have examined and
reviewed four candidate frameworks: (1) Practical Software Measurement (PSM), (2) the SEI
Capability Maturity Model, (3) the Objectives/Principles/Attributes (OPA) framework, and (4) an
approach based on subject matter experts applying aspects from all of the others. We believe this
last approach to offer some major advantages, and we are intending to suggest this in the future
system applications.

21

We are in the process of setting up a meeting with' Dr. William Fair and Ms. Sherry Barker of
NSWCDD to discuss our approach and the potential for applying the work to a Navy project.

2.4 Description of Prototype Virtual School (John Carroll- Tasks 1.3.2,1.4.1, 1.6.1) CDRL Data Item
0015,0016, and 0031.
Our work during this past year has focused on usability engineering and design guidelines for
developing interactive virtual environment (VE) applications. Specifically, we have focused on
designing navigation in a Responsive Workbench for an application, called Dragon, developed at
the Naval Research Laboratory in Washington DC. We are addressing the applicability of
established usability engineering methods in conjunction with development of new usability
engineering methods. Our goal is to provide a methodology — or set of methodologies — to
ensure usable and useful VE interfaces. Our work has produced a high-level methodology that is
a logical progression of techniques. This work has been summarized in CDRL #0025 which is
being submitted separately.

The Center for Human-Computer Interaction has two areas of responsibility in the first year of
the NAVCnTI program: The first area is in design rationale, an intersection between human-
computer interaction (HCI) and software engineering. We are investigating the proactive use of
design rationale in software development, specifically focusing on the management of usability
rationale in a scenario-based design process through use of claims analysis, and including
refinement and dissemination of such methods for analyzing usability and domain object
tradeoffs in Naval software designs, prototypes, and systems. Our task in this area is to prepare a
textbook for the methodology, and to support Naval software and system development.

The second area of responsibility for the Center for Human-Computer Interaction is in computer-
supported collaborative work (CSCW). We are investigating the development and application of
collaborative multimedia conferencing software for education and other groupwork activities.
We are extending our virtual school software framework integrating shared notebook,
whiteboard, chat, visualizations, simulations, video conferencing, etc.

We have continued to make good progress on our technical tasks. An upper level textbook on the
management of usability rationale in a scenario-based design process through use of claims
analysis is complete. We have begun work on a lower-level textbook, which presents scenario-
based system development as part of the undergraduate computer science curriculum in software
engineering and human-computer interaction. Addison-Wesley, Morgan-Kaufman, MIT Press,
Prentice-Hall, John Wiley and Lawrence Erlbaum Associates have expressed interested in
publishing this text, based on reviews of a chapter-by-chapter outline. Chapters 1-6 and 9 are
now complete, and are being used in as text materials in CS3724 "Introduction to Human-
Computer Interaction" in the Fall 1999 semester. Fourteen chapters are planned. Based on this
material, we proposed, and have now been invited to provide, a full-day tutorial on scenario-
based design for the 2000, ACM CHI Conference, the top international conference in human-
computer interaction.

We have also made progress on several fronts in developing a system to support collaborative
learning and planning interactions. We are focusing on developing and evaluating the Virtual
School, a Java-based networked learning environment, emphasizing support for the coordination
of synchronous and asynchronous collaboration. The Virtual School integrates communication
tools such as video conferencing, shared whiteboards, chat, and email. It also includes a shared
notebook that supports collaborative planning, note taking, experimentation, data analysis, and
report writing. Currently we are developing several new collaborative page types for the shared
notebook, investigating off-the-shelf component reuse, experimenting with a set of synchronous
and asynchronous awareness tools, and developing a comprehensive evaluation methodology to
assess the usability and usefulness of such environments. To test new tool development and

22

further explore the evaluation framework, we are continuing to implement the system in a number
of new contexts. Investigating a range of different cooperative work types under varying
synchronous and asynchronous modes is allowing us to expanding our understanding of how the
tools are used in real contexts and how to evaluate them under these conditions. For example, in
one new environment the tools are being used for teaching instead of peer-to-peer collaboration,
and in another case we are analyzing asynchronous only mentoring.

One focus of this work in the past six months has been the development of a multi-faceted
evaluation methodology for complex, distributed groupware activities. We are continuing to
develop methods of large-scale usage data collection over the Internet. Evaluating distributed
systems call for innovative methods that do not require an evaluator to be physically present at
the user's work site. We are continuing to refine our tool set composed of three interrelated
processes: (1) event capturing, (2) activity filters, and (3) integrated event scripts (collated
activities from multiple data across a range of contexts). This form of data logging provides
multiple representations of user and system behavior that translates measures of performance into
more meaningful characterizations of human-computer interaction. We have begun to combine
this usage data into integrated event scripts. These scripts are multi-threaded documents that
characterize group activities collected from different connected sites. A range of data collected
from the different sites are integrated into the scripts. We are specifically working on developing
procedures that reduce the time needed to analyze data versus the duration of data collection
sequences. We are trying to develop heuristic methods that maximize cost-benefit in the analysis
to produce optimal data collection and analysis procedures. Part of this work is developing a
classification scheme to map different problem types to different data collection methods. This
will allow us to pinpoint how different methods find critical, typical, and problematic tasks.

A second focus has been the development of an alternative environment for place-based
synchronous groupwork. The new environment is based on the same collaborative infrastructure
as the Virtual School, and supports end-user construction of hierarchies of shared spaces.
Persistent shared objects can be created within and moved between these spaces. Users can
navigate from place to place using a map-based interface and can interact synchronously via text
chat, whiteboards, and slide shows. They can interact asynchronously by creating and
manipulating persistent objects, including message boards, shared notebooks, and Java applets.
We are exploring the extent to which this interactive Java-based environment can be made more
widely accessible and provide richer interactions than traditional place-based tools such as purely
text-based multi-user domains (MUDs).

We have begun to interview potential clients and users of this alternative environment for place-
based synchronous groupwork. This information is being used as an initial user profile,
requirements analysis, and task analysis. Several groups have been targeted for data collection,
and we are using the data for a side-by-side comparison to determine group appropriateness as
test cases. Several significant enhancements have been made to the system architecture. Support
has been added for allowing users to extend the environment's capabilities by developing new
collaborative components. Current work includes ongoing development of flexible security
mechanisms for places and objects in the environment.

Publications currently submitted and in review
Carroll, J.M., Isenhour, P.L., Rosson, M.B., Van Metre, C, Schaefer, W.A., & Ganoe, C.H.
MOOsburg: Supplementing a real community with a virtual community. Submitted to
International Network Conference 2000 (3-6 July, Plymouth, United Kingdom).
Chin, G. & Carroll, J.M. 1998. Articulating collaboration in a learning environment.
Submitted to Behaviour and Information Technology.

23

Dunlap, D. et al. 2Ö00. Teacher collaboration in networked communities. Educational
Technology & Society, Special Issue on "On-Line Collaborative Learning Environments"
Go, K. & Carroll, J.M. 1998. Blind men and an elephant: Views of scenario-based system
design. Submitted to ACM interactions
Helms, J., Neale, D.C. & Carroll, J.M. Data logging: higher-level capture and multi-level
abstraction of user activities. Submitted to Annual Conference of the Human Factors and
Ergonomics Society.
Isenhour, P.L. et al. 2000. The Virtual School: An integrated collaborative environment for
the classroom. Educational Technology & Society, Special Issue on "On-Line Collaborative
Learning Environments"
Isenhour, P.L., Rosson, M.B. & Carroll, J.M. Supporting asynchronous collaboration and
late joining in Java groupware. Submitted to Interacting with Computers, Special Issue on
Web Software.
Neale, D.C, Dunlap, D.R., Isenhour, P.L. & Carroll, J.M. Collaborative critical incident
development. Submitted to Annual Conference of the Human Factors and Ergonomics
Society.
Submissions recently accepted for publication/presentation
Carroll, J.M. HCI in the New Millennium. Edited book to be published by Addison-
Wesley/ACM Books, contract signed in August.
Carroll, J.M. & Rosson, M.B. Scenario-Based Usability Engineering. Tutorial for ACM
CHT00 Conference: Human Factors in computing Systems.
Gibson, S., Neale, D.C, Van Metre, C.A. & Carroll, J.M. Mentoring in a school
environment. Accepted for publication/presentation Third Conference on Computer-
Supported Cooperative Learning.
Neale, D.C. & Carroll, J.M. Multi-faceted evaluation for complex, distributed activities.
Accepted for publication/presentation Third Conference on Computer-Supported
Cooperative Learning.

2.5 Strategies to control ship motions in high seas and description of LAMP to Cave Interface (Ali
Nayfeh- Task 1.4a.2) CDRL Data Item 0021, 0022
The objective of this task is to purchase, install, and operate the hardware and software that are
needed to use state-of-the-art physical models of ships and cranes mounted on ships to develop a
state-of-the-art Ship and Crane Simulator Test-Bed at the CAVE at Virginia Tech. To accomplish
this objective, we are combining the existing VT CAVE hardware and software capabilities with
the new hardware and developing the software capabilities required to support the Ship and Crane
Simulator and raise simulations to a new level of reality.

For the ship response simulation, we are using the Large-Amplitude-Motions Programs (LAMPs)
developed by the Science Applications International Corporation (SAIC), as being upgraded by
SAIC and Virginia Tech under the Multidisciplinary University Research Initiative on Nonlinear
Active Control of Dynamical Systems sponsored by ONR. LAMPs predict interactively the
motion of and the flow around a ship advancing in moderate and severe sea conditions. They
provide solutions in the time-domain and are not restricted to periodic motions. They can handle
time-varying forward speeds and large-amplitude incident waves and large-amplitude ship
motions where changes in the underwater surface of the ship are significant. The LAMP codes
use potential theory to simulate the flow. They have varying degrees of complexity, including
linear, weakly nonlinear, and fully nonlinear options. At the highest level, the free-surface
boundary conditions are linearized about the actual incident-wave surface, and the body boundary
conditions are satisfied on the instantaneous wetted surface. The wave amplitude may be the

24

same order as the draft of the ship, but must be an order of magnitude less than the wavelength.
An integral equation for the velocity potential is obtained by using Green's theorem and time-
dependent Green functions on the free surface and the wetted portion of the hull. This integral
equation is solved by a panel method: the surfaces are divided into planar quadrilateral elements
of constant potential strength and by collocation the integral equation is replaced by a finite
system of linear algebraic equations. The resulting system of linear equations is solved at each
time step; thus LAMP produces a time-domain solution that is not restricted to periodic motions.
In order to account for viscous effects, which are dominant in the case of roll motion, an
empirical state-of-the-art method based on experimental data is employed at the present. The
resultant forces and moments are calculated at each time step.

We purchased a six-degree-of-freedom MOOG motion platform. Because it is large, we had to
disassemble it and move it into suite 2400, 2000 Kraft Drive, Blacksburg, VA, and then
reassemble it. An application programming interface (API), or library subroutine, was written for
controlling the platform motion from an SGI Onyx using an RS-422 serial protocol. Computer
programs using this API communicate new the desired motions to the platform indirectly and
asynchronously visa inter-process shared memory. It is shared with a server process that writes
the requested new motions to the RS-422 serial line. This design was needed in order to keep the
RS-422 serial line active so the computer of the platform can function properly. SGI graphics
programs do not run with a fixed cycle time so they are not capable of keeping the RS-422 serial
line active and so a separate server process is needed. The shared memory design leads to an easy
asynchronous control of the platform by any process. Hence, a separate real-time dynamics
process can be run to control the motion of the platform. Using the developed API, we have
written a computer program to have the platform move using data from LAMP simulations.

We started with the intention of using the marine module and other functionality of MultiGen-
Paradigm's Vega. However, we dropped the use of because of its inability to synchronize in time
the waves generated with Vega with the waves predicted with LAMP. Instead, we wrote a code
with SGI Performer and the CAVE library. Since Vega is built on top of Performer, we are in
effect programming with a lower level API in which we gain flexibility. We have developed such
a computer program that displays ocean waves in the CAVE.

On Oct 4, 1999, at the Sixth Semi-Annual MURI meeting, we demonstrated a graphical ship
model traveling through ocean waves, as predicted with LAMP. Moreover, we made the platform
move according to the motions predicted with LAMP and generated the waves. In other words,
the waves and motions are synchronized. On November of 1999, we mounted a truck driver's
seat to serve as a crane operator seat on the platform. We also constructed a two arm-side console
frame for mounting the crane operator control devices.

The standard tracking system for CAVEs and other immersive environments use magnetic fields
for determining location and orientation. In an environment where there are large steel or iron
objects, such as structural I-beams, the tracking system's data can be skewed due to the

object's interference with the magnetic field that's emanated by the tracking system. This skew
can usually be accommodated if the metal object is not in motion. When the Moog motion
platform, a 1700 pound steel structure, is placed in the floor of the CAVE, magnetic tracking
becomes unusable. Not only does the steel's mass skew the field, but when the platform is in use
the mass is in motion, and is placed in motion by use of electric motors. It became imperative
that a tracking system should be found that did not depend on magnetic fields. Otherwise the
motion platform could not be used in the CAVE.

After a search of the available products, the Intersense tracking system ('http://www.isense.com/)
emerged as the product that provided the highest speed and greatest accuracy. The Intersense

25

tracking technology incorporates a mixture of inertial and acoustic sensors which are unaffected
by magnetic fields and metal objects.Intersense had not yet installed a unit in a CAVE, so the VT
CAVE staff worked with Intersense to produce a viable system, which so far has met all
expectations. The Intersense software is compatible with the original magnetic tracking system's
software, so all original CAVE application and development packages were unaffected by
installing the new system.

2.6 Specifications for Tactical Interface based on HCI principles (Deborah Hix- 1.4b.2) CDRL Data
Item 0025

1. INTRODUCTION
Our work during this past year has focused on usability engineering and design guidelines for
developing interactive virtual environment (VE) applications. Specifically, we have focused
on designing navigation in a Responsive Workbench for an application, called Dragon,
developed at the Naval Research Laboratory in Washington DC. We are addressing the
applicability of established usability engineering methods in conjunction with development of
new usability engineering methods. Our goal is to provide a methodology — or set of
methodologies — to ensure usable and useful VE interfaces. Our work has produced a high-
level methodology that is a logical progression of techniques, as detailed in Section 3.5.

Usability engineering, described rather simplistically, is the process by which usability is
ensured for an interactive application, at all phases in the development process. These phases
include user task analysis, user class analysis, design of the user interaction, rapid
prototyping, user-centered evaluation, and iterative re-design based on evaluation results.
Usability engineering includes both design and evaluations with users; it is not just applicable
at the evaluation phase. Usability engineering is not typically structured hypothesis-testing-
based experimentation.

Until recently, the terms "usability engineering" and "virtual environments" were rarely, if
ever, used in the same sentence or context. VE developers have focused largely on producing
the next new "gee whiz" gadget and "way cool" interaction technique with too little attention
given to how users will benefit (or not) from those gadgets and techniques. Admittedly, "gee
whiz, way cool" exploration in a new realm such as VEs is necessary. However, VEs have
been rather mature for nearly a decade now, with an ever-expanding variety of possible
applications.

Most extant usability engineering methods widely in current use were spawned by the
development of GUIs. So even when VE developers attempt to apply usability engineering
methods, most VE user interfaces are so radically different that well-proven techniques that
produce usable GUIs may be neither particularly appropriate nor effective for VEs. Few
principles for design of VE user interfaces exist, and almost none are empirically derived or
validated. Use of usability engineering methods often results in VE designs that produce very
unexpected reactions and performance of users, reaffirming the need for exactly such
methods! Ultimately researchers and developers of VEs should seek to improve VE
applications, from a user's perspective — ensuring their usability — by following a
systematic approach to VE development such as offered from usability engineering methods.

During this first year of work, we have explored several usability engineering methods,
including some adapted from GUI development, to see how successfully they can be applied
to VE development. These methods include user task analysis, expert guidelines-based
evaluation (also sometimes called heuristic evaluation or usability inspection), and formative
usability evaluation. These methods, and their logical progression developing a VE, are

26

described in later sections. We conclude this report by presenting how this logical
progression was applied to development of the Dragon VE.

2. SETTING THE CONTEXT FOR VE USABILITY ENGINEERING

Before we present specific usability engineering methods and give examples of their
application, it is important to set the context for usability engineering. Developers of
interactive systems — systems with user interfaces — often confuse the boundaries between
the software engineering process and the usability engineering process. This is due at least in
part to a lack of understanding of techniques for usability engineering, as well as which of
these techniques is appropriate for use at which stages in the development process.

Software engineering has as a goal to improve software quality, but this goal, in and of itself,
has little impact on usability of the resulting interactive system — in this case, a VE. For
example, well-established "v&v" (validation and verification) techniques focus on software
correctness, robustness, and so on, from a software developer's view, with little or no
consideration of whether that software serves its users' needs. Thus, quality of the user
interface — the usability — of an interactive system is largely independent of quality of the
software for that system. Usability of the user interface is ensured by a user-centered focus
on developing the user interaction component— the look and feel and behavior as a user
interacts with an application. The user interaction component includes all icons, text,
graphics, audio, video, and devices through which a user communicates with an interactive
system. The user interaction component is developed by interaction designers and evaluators.
Usability is unaffected by the software component, including that for both the user interface
and the rest of the application (i.e., the non-user-interface software. Software engineers and
systems engineers develop the software component of an interactive system.

Cooperation between usability engineers and software engineers is essential if VEs are to
mature towards a truly user-centric work and entertainment experience. Thus, both the
interaction component and the software component are necessary for producing any
interactive system, including a VE, but the component that ensures usability is the user
interaction component.

3. CURRENT USABILITY ENGINEERING METHODS

As mentioned, many of the techniques we are studying come from usability engineering
methods for GUIs. But from our own studies, as well as from collaboration with and
experiences of other VE researchers and developers, we have adapted GUI methods and
produced some new methods for usability engineering of VE user interaction design. We
have made adaptations and enhancements to existing methods at two levels to evolve a
usability engineering methodology applicable to VEs: specific methods themselves had to be
altered and extended to account for the complex interactions inherent in multimodal VEs, and
various methods had to be applied in a meaningful sequence to both streamline the usability
engineering process as well as provide sufficient coverage of the usability space.

To better understand the strengths and applicability of each individual GUI usability
engineering method, we present a basic discussion of each method, to provide a brief
overview of each. Following discussion of individual methods, we present benefits and
insights gained from use of these adapted methods for VE user interaction development.

3.1. User Task Analysis
A user task analysis is the process of identifying a complete description of tasks,
subtasks, and actions required to use a system as well as other resources necessary for
user(s) and the system to cooperatively perform tasks (Hix & Hartson, 1993). User task

27

analyses follow a formal methodology, describing and assessing performance demands of
user interaction and application objects. These demands are, in turn, compared with
known human cognitive and physical capabilities and limitations, resulting in an
understanding of the performance requirements of end users. User task analysis (Hackos
& Redish, 1998) may be derived from several components of early systems analysis, and
at the highest level, rely on an understanding of several physical and cognitive
components. User task analyses are the culmination of insights gained through an
understanding of user, organizational, and social workflow; needs analysis; and user
modeling.

There are four generally accepted techniques for performing user task analysis:
documentation review, questionnaire survey, interviewing, and observation (Eberts,
1999). Documentation review seeks to identify task characteristics as derived from
technical specifications, existing components, or previous legacy systems. Questionnaire
surveys are generally used to help evaluate interfaces that are already in use or have some
operational component. In these cases, task-related information can be obtained by
having domain experts such as existing users, trainers, or designers complete carefully
designed surveys. Interviewing an existing or identified user base, along with domain
experts and application "visionaries", provides very useful insight into what users need
and expect from an application. Observation-based analysis, on the other hand, requires a
user interaction prototype, resembling more the formative evaluation process than
development of user task analysis, and as such, is used as a last resort. A combination of
early analysis of application documentation and domain-expert- and user-interviewing
typically provides the most useful and plentiful task analysis.

While user task analyses are typically performed early in the development process, it
should be noted that — like all aspects of user interaction development — task analyses
also need to be flexible and potentially iterative, allowing for modifications to
performance and user interaction requirements during any stage of development.
However, major changes to user task analysis during late stages of development can
derail an otherwise effective development effort, and as such, should only be considered
under dire circumstances.

User task analysis generates critical information used throughout all stages of the
application development lifecycle. One such result is a top-down decomposition of
detailed task descriptions. These descriptions serve, among other things, as an
enumeration of desired functionality for designers and evaluators. Equally revealing
results of task analysis include an understanding of required task sequences as well as
sequence semantics. Thus, results of task analysis include not only identification and
description of tasks, but ordering, relationships, and interdependencies among user tasks.
These structured analytical results set the stage for other products of task analysis,
including an understanding of information flow as users work through various task
structures.

Another useful result of task analysis is indications of where and how users contribute
information to, and are required to make decisions that influence, user task sequencing.
This information, in turn, can help designers identify what part(s) of the tasking process
can be automated by computer (one of the original and still popular services a computer
may provide) affording a more productive and useful work environment.

Without a clear understanding of user task requirements, both evaluators and developers
are forced to "best guess" or interpret desired functionality which inevitably leads to poor
interaction design. Indeed, both user interaction and user interface software developers

28

claim that poor, incomplete, or missing task analysis is one of the most common causes
of both poor software and product design.

3.2. Expert Guidelines-based Evaluation

Expert guidelines-based evaluation or heuristic evaluation or usability inspection aims to
identify potential usability problems by comparing a user interaction design — either
existing or evolving — to established usability design guidelines. The identified
problems are then used to derive recommendations for improving interaction design. The
method is used by usability experts to identify critical usability problems early in the
development cycle so that design issues can be addressed as part of the iterative design
process (Nielsen, 1994).

Expert guidelines-based evaluations rely on established usability guidelines to establish
whether a user interaction design supports intuitive user-task performance (i.e., usability).
(Nielsen, 1994) recommends three to five evaluators for a heuristic evaluation since
fewer evaluators generally cannot identify enough problems to warrant the expense, and
more evaluators produce diminishing results at higher costs. It is not clear whether this
recommendation is cost-effective for VEs, since more complex VE interaction designs
may require more evaluators than GUIs. Each evaluator first inspects the design alone,
independently of other evaluators' findings. Results are then combined, documented, and
assessed as evaluators communicate and analyze both common and conflicting usability
findings.

A heuristic evaluation session may last one to two hours, or even more depending upon
the complexity of the design. Again, VE interaction designs may require more time to
fully explore. Further, heuristic evaluation can be done using a simple pencil and paper
design (assuming that the design is mature enough to represent a reasonable amount of
interaction components and interactions). This allows assessment to begin very early in
the application development lifecycle.

The output from an expert guidelines-based evaluation should not only identify
problematic interaction components and interaction techniques but should also indicate
why a particular component or technique is problematic. Results from heuristic evaluation
are subsequently used to remedy obvious and critical usability problems as well as to
shape the design of subsequent formative evaluations (see Section 3.3). Evaluation
results further serve as both a working instructional document for user-interface software
developers, and more importantly, as fundamentally sound, research-backed, design
rationale.

Given that expert guidelines-based evaluations are based largely on a set of usability
heuristics, it can be argued that the evaluations are only as effective and reliable as the
guidelines themselves. Nielsen (1994) presents usability heuristics for traditional GUIs.
While these heuristics are considered to be the de facto standard for GUIs, we have found
that they are too general, ambiguous, and high-level for effective and practical heuristic
evaluation of VEs. Effectiveness is questioned on the simple fact that 3D, immersive,
VE interfaces are much more complex than traditional GUIs. The original heuristics
(implicitly) assume traditional input/output devices such as keyboard, mouse, and
monitor, and do not address the appropriateness of VE devices such as CAVEs, HMDs,
haptic and tactile gloves, various force feedback devices, etc. Determining appropriate
VE devices for a specific application and its user tasks is critical to designing usable VEs.
Practicality is questioned due to the abstractness of the heuristics; VE evaluators need
specific, concrete guidelines to apply in rapid and reliable evaluations.

29

It is well-recognized that VE interfaces and VE user interaction are immature and
currently emerging technologies for which standard sets of design, much less usability
guidelines, do not yet exist. However, our recent research at Virginia Tech has produced
a set of VE usability design guidelines, contained within a framework of usability
characteristics (Gabbard & Hix, 1999). This framework document (see
http://www.vpst.org/jgabbard/ve/framework) is available and provides a reasonable
starting point for heuristic evaluation of VEs. The complete document contains several
associated usability resources including specific usability guidelines, detailed context-
driven discussion of the numerous guidelines, and citations of additional references.

The framework organizes VE user interaction design guidelines and the related context-
driven discussion into four major areas: users and user tasks, input mechanisms, virtual
model, and presentation mechanisms. The framework categorizes 195 guidelines
covering many aspects of VEs that affect usability including navigation, object selection
and manipulation, user goals, fidelity of imagery, input device modes and usage,
interaction metaphors, and much more. The guidelines presented within the framework
document are well-suited for performing heuristic evaluation of VE user interaction,
since they provide both broad coverage of VE interaction/interfaces and are specific
enough for practical application. For example, with respect to navigation within VEs,
one guideline reads "provide information so that users can always answer the questions:
Where am I now? What is my current attitude and orientation? Where do I want to go?
How do I travel there?" Another guideline addresses methods to aid in usable object
selection techniques stating "use transparency to avoid occlusion during selection."

We have successfully used these guidelines within context as a basis for heuristic
evaluation of several VEs ranging from medical visualization to command and control
situational awareness applications (Swartz et al., 1998; Hix et al., 1999b).

3.3. Formative Usability Evaluation

The termformative evaluation was coined by Scriven (1967) to define a type of
evaluation that is applied during evolving or formative stages of design. Scriven used
this in the educational domain for instructional design). Williges (1984) and Hix and
Hartson (1993) extended and refined the concept of formative evaluation for the human-
computer interaction domain.

The goal of formative evaluation is to assess, refine, and improve user interaction by
iteratively placing representative users in task-based scenarios in order to identify
usability problems, as well as to assess the design's ability to support user exploration,
learning, and task performance (Hix & Hartson, 1993). Formative usability evaluation is
an observational evaluation method which ensures usability of interactive systems by
including users early and continually throughout user interface development. The method
relies heavily on usage context (e.g., user task, user motivation, etc.) as well as a solid
understanding of human-computer interaction (and in the case of VEs, human-VE
interaction) and, as such, requires the use of usability experts (Hix & Hartson, 1993).

While the formative evaluation process was initially intended to support iterative
development of instructional materials, it has proven itself to be a useful tool for
evaluation of traditional GUI interfaces. Moreover, in the past few years, we have seen
first hand evidence indicating that the formative evaluation process is also an efficient
and effective method of improving the usability of VE interfaces (Hix et al., 1999a).

The steps of a typical formative evaluation cycle begin with development of user task
scenarios, and are specifically designed to exploit and explore all identified task,

30

information, and work flows. Representative users perform these tasks as evaluators
collect both qualitative and quantitative data. These data are then analyzed to identify
user interaction components or features that both support and detract from user task
performance. These observations are in turn used to suggest user interaction design
changes as well as formative evaluation scenario and observation (re)design.

The formative evaluation process itself is iterative, allowing evaluators to continually
refine user task scenarios in order to fine tune both the user interaction and the evaluation
process. Contrary to popular belief, the formative evolution process produces both
qualitative and quantitative results collected from representative users during their
performance of task scenarios (del Galdo et al., 1986). One type of qualitative data
collected is termed critical incidents (del Galdo et al., 1986; Hix & Hartson, 1993). A
critical incident is a user event that has a significant impact, either positive or negative,
on users' task performance and/or satisfaction (e.g., a system crash or error, being unable
to complete a task scenario, user confusion, etc.). Critical incidents which have a
negative effect on users' work flow can drastically impede usability and may even have a
dramatic effect on users' perceptions of application quality, usefulness, and reputation.
As such, any obvious critical incidents are best discovered during formative evaluation
phases as opposed to consumers' desktops.

Equally important are the quantitative data collected during formative evaluation. These
data include measures such as how long it takes a user to perform a given task, the
number of errors encountered during task performance, etc. Collected quantitative data
are then compared to appropriate baseline metrics, sometimes initially redefining or
altering evaluators' perceptions of what should be considered baseline. Both qualitative
and quantitative data are equally important since they each provide unique insight into an
interaction design's strengths and weaknesses.

3.4. Summative Evaluation

Summative evaluation, in contrast to formative evaluation, is typically performed after a
product or design is more or less complete; its purpose is to statistically compare several
different systems, for example, to determine which one is "better" — where better is
defined in advance. Another goal of summative evaluation is to measure and
subsequently compare the productivity and cost benefits associated with various designs.
In this fashion, evaluators are simply comparing the best of a few refined designs to
determine which of the "finalists" is best suited for delivery.

The term summative evaluation was also coined by Scriven (1967), again for use in the
instructional design field. As with the formative evaluation process, human-computer
interaction researchers (e.g., (Williges, 1984)) have applied the theory and practice of
summative evaluation to interaction design with surpassingly successful results.In
practice, summative evaluation can take on many forms. The most common are the
comparative, field trial, and more recently, the expert review (Stevens et al., 1997).
While both the field trial and expert review methods are well-suited for instructional
content and design assessment, they typically involve assessment of single prototypes or
field-delivered designs. In the context of VE design, we are mostly interested in
assessing the quality of two or more user interaction designs, and as such, have focused
on the comparative approach. Our experiences have found that this approach is very
effective for analyzing the strengths and weaknesses of various well-formed, completed
designs using representative user scenarios.

31

(Stevens et al., 1997) presents a short list
of questions that summative evaluation
should address. We have modified these
questions to address summative,
comparative evaluation of VE user
interfaces. The questions include:

What are the strengths and weaknesses
associated with each user interaction design?
To what extent does each user interaction
design support overall user and system
goal(s)?
Did users perceive increased utility and
benefit from each design? In what ways?
What components of each design were most
effective?
Was the user interaction evaluation effort
successful? That is, did it provide a cost-
effective means of improving design and
usability?
Were the results worth the program's cost?

A Usability E
VE User

ngineering Progression for
Interaction Evaluation

User Task
Analysis

\

Expert
Guidelines-based

Evaluation

\
Formative
Usability

Evaluation

\
Summative

Comparative
Evaluation

(Usable and Useful \
\User Interface Prototype/

Figure 1. Successful progression of usability
enqineerinq methods.

3.5. A Successful Progression

As previously mentioned, one of our long-term research goals is to produce
methodologies to improve the usability of VE user interaction designs. More
specifically, the goal is to develop, modify, and fine-tune usability engineering
techniques specifically for VEs. Techniques to aid in usability engineering of VEs will
mature, and as such, the potential for conducting effective evaluations and delivering
subsequent usable and useful VEs will increase.

Our current efforts are focusing on the combination of usability engineering techniques
described in Sections 3.1 to 3.4. As depicted in Figure 1, our applied research over the
past several years has shown that, at a high level, progressing from user task analysis to
expert guidelines-based evaluation to formative evaluation to summative evaluations is
an efficient and cost-effective strategy for designing, assessing, and improving the user
interaction — usability engineering — of a VE.

One of the strengths of this progression is the fact that it exploits a natural ordering or
evolution of interaction design and prototyping, with each method generating a
streamlined set of information the next method utilizes. In this sense, each method is
able to generate a much better starting point for subsequent methods, than when applied
in a standalone fashion. Moreover, simply applying more than one usability engineering
method ensures more complete coverage of an interaction design's "usability space",
each revealing its niche of particular usability problems, collectively shaping a more

32

usable VE. And finally, the progression of methods also produces a "paper trail" of
persistent documentation that may serve as documented design rationale.

This progression is very cost-effective for assessing and improving VEs. For example,
summative studies are often performed on VE interaction designs that have had little or
not task analysis or expert guidelines-based or formative evaluation. This may result in a
situation where the expensive summative evaluation is essentially comparing "good
apples" to "bad oranges" (Hix et al., 1999). Specifically, a summative study of two
different VEs may be comparing one design that is inherently better, in terms of usability,
than the other one. When all designs in a summative study have been developed
following our suggested progression of usability engineering, then the comparison is
more valid. Experimenters will then know that the interaction designs are basically
equivalent in terms of their usability, and any differences found among compared designs
are, in fact, due to variations in the fundamental nature of the designs, and not their
usability.

4. APPLICATION OF USABILITY ENGINEERING METHODS TO DRAGON

Research and development performed both in our own labs and in other VE labs has shown
the usability engineering techniques just described to be effective for ensuring usability. The
Dragon case study presents the application of these methods to a military command and
control application developed for the Responsive Workbench at the Naval Research
Laboratory's Virtual Reality Laborator in Washington DC. For development of the Dragon
VE application, we are following the usability engineering methods described above with
great success in evolving the interaction design.

4.1. Dragon

Personnel at NRL, in collaboration with Virginia Tech researchers, have developed
Dragon, a VE for battlefield visualization (Hix et al., 1999a). Implemented on a
Responsive Workbench, Dragon's metaphor for visualizing and interacting with 3D
computer-generated scenery uses a familiar tabletop environment. Applications in which
several users collaborate around a work area, such as a table, are excellent candidates for
the Workbench. This metaphor is especially familiar to Naval personnel and Marines,
who have, for decades, accomplished traditional battlefield visualization on a tabletop.
Paper maps of a battlespace are places under sheets of acetate. As intelligence reports
arrive from the field, technicians use grease pencils to mark new information on the
acetate. Commanders then draw on the acetate to plan and direct various battlefield
situations. Historically, before high-resolution paper maps, these operations were
performed on a sandtable, literally a box filled with sand shaped to replicate battlespace
terrain. Commanders moved around small physical replicas of battlefield objects to
direct battlefield maneuvers. The fast-changing modern battlefield produces so much
time-critical information that these cumbersome, time-consuming methods are inadequate
for effectively visualizing and commanding a modern-day battlespace.

Dragon, shown in Figure 2, was developed on the Responsive Workbench to give a 3D
display for observing and managing battlefield information shared among technicians and
commanders. Visualized information includes a high-resolution terrain map; entities
representing friendly, enemy, unknown, and neutral units; and symbology representing
other features such as obstructions or key map points. Users can navigate to observe the
map and entities from any angle and orientation around the Workbench.

33

Figure 2: Screen shot from the Dragon battlefield visualization virtual environment.
Dragon's early development was based on an admittedly cursory user task analysis, which
drove early design. This was followed, however, by numerous cycles of expert guidelines-
based evaluation as well as formative evaluations. Early in Dragon design, we produced and
assessed three general interaction methods for the Workbench, any of which could have been
used to interact with Dragon: hand gestures using a pinchglove (Obeysekare et al., 1996),
speech recognition, and a hand-held flightstick. Although it was an interesting possibility for
VE interaction, our formative evaluations found that speech recognition is still too immature
for battlefield visualization. We further found the pinchglove to be too fragile and time-
consuming to pass from user to user around the Workbench. It also worked best for right-
handed users whose hands were approximately the same size. In contrast, our formative
evaluations revealed that the flightstick was robust, easily handed from user to user, and
worked for both right- and left-handed users.
Based on these formative evaluations, we modified a three-button game flightstick by
removing its base and placing a six degree-of-freedom position sensor inside. Our initial
designs used a laser pointer metaphor in which a laser beam appeared to come out the "head"
of the flightstick as a user pointed it toward the VE map. When a beam intersected terrain or
an object, a highlight marker appeared.

34

In early demonstrations of initial versions of Dragon in real military exercises for battlefield
planning, users indicated they found Dragon's accurate and current visualization of the
battlespace to be more effective and efficient than the traditional method of maps, acetate,
and grease pencils. Following these successful demonstrations and positive feedback, we
began intensive usability engineering of Dragon's user interaction design.
Also during our early demonstrations and evaluations, we observed that navigation - how
users manipulate their viewpoint to move from place to place in a virtual world (in this case,
the battlefield map) - profoundly affects all other user tasks. If a user cannot successfully
navigate to move about in a virtual world, then other user tasks such as selecting an object or
grouping objects cannot be performed. A user cannot query an object if the user cannot
navigate through the virtual world to get to that object. Although we performed a user task
analysis before our guidelines-based and formative evaluations, these evaluations supported
our expectations of the importance of navigation.
Expert guidelines-based evaluation was done extensively for Dragon, prior to much
formative evaluation. However, we were developing the framework of usability
characteristics of VEs at the same time we were performing the guidelines-based evaluation,
and so the guidelines we used were much more ad hoc and less structured than those that
eventually became the framework. Nonetheless, even our informal inspection of the
evolving Dragon interaction design provided tremendous feedback in what worked and what
didn't, especially for use of the wand and other aspects of navigation in Workbench VE
applications in general and Dragon in particular. During these evaluations, VE user
interaction design experts worked alone or collectively to assess the Dragon interaction
design.
In our earliest evaluations, the experts did not follow specific user task scenarios per se, but
engaged simply in "free play" with Dragon using the wand. All experts knew enough about
the purpose of Dragon as a battlefield visualization VE to explore the kinds of tasks that
would be more important for Dragon users. During each session, one person was typically
"the driver", holding the flightstick and generally deciding what and how to explore in the
application. One and sometimes two other experts were observing and commenting as the
"driver" worked, with much discussion during each session. Major design problems that
were uncovered in our expert guidelines-based evaluation of Dragon included poor mapping
of navigation tasks (i.e., pan, zoom, pitch, heading) to flightstick buttons, missing
functionality (e.g., exocentric rotate, terrain following), problems with damping of map
movement in response to flightstick movement, and graphical and textual feedback to the
user about the current navigation task. After these evaluations had revealed and remedied as
many design flaws as possible, we moved on to formative evaluation.
We used the basic Dragon application to perform extensive evaluations, using anywhere
from one to three users for each cycle of evaluation. From a single evaluation session we
often uncovered design problems so serious that it was pointless to have a different user
attempt to perform scenarios with the same design. So we would iterate the design, based on
our observations, and begin a new cycle of evaluation. We went through four major cycles
of iteration in all.
In designing our scenarios for formative evaluation, we carefully considered coverage of
specific usability issues related to navigation. For example, some of the tasks exploited an
egocentric (user moves through the virtual world) navigation metaphor, while others
exploited an exocentric (user moved the world) navigation metaphor. Some scenarios

35

exercised various navigation tasks (e.g., degrees of freedom: pan, zoom, rotate, heading,
pitch, roll) in the virtual map world. Other scenarios served as primed exploration or non-
targeted searches for specific features or objects in the virtual world. Still others were design
to evaluation rate control versus position control.
During each of six formative evaluation sessions, we first asked the participant to play with
the flightstick to figure out which button activated which navigation task. We timed each
user as they attempted to determine this, and took notes on comments and any critical
incidents that occurred. Once a user had successfully figured out how to use the flightstick,
we began having them formally perform the task scenarios. Only one user was unable to
figure out the flightstick in less than 15 minutes; we told this user details they had not yet
discovered and proceeded with the scenarios.
Time to perform the set of scenarios ranged from about 20 minutes to more than one hour.
We timed user performance of individual tasks and scenarios, and counted errors made
during task performance. A typical error was moving the flightstick in the wrong direction
for the particular navigation metaphor (exocentric or egocentric) that was currently in use.
Other errors involved simply not being able to maneuver the map (e.g., to rotate it) and
persistent problems with mapping navigation tasks (degrees of freedom) to flightstick
buttons, despite our extensive prior evaluations to minimize this issue. During each
formative evaluation session, we had at least two and often three evaluators present. One
served as the facilitator to interact with the participant and keep the session moving; the other
one or two evaluators recorded times, counted errors, and collected critical incidents and
other qualitative data. While these sessions (like those of Crumbs in the CAVE) seem
personnel-intensive, with two or three evaluators involved, we found that the quality and
quantity of data collected by multiple evaluators greatly outweighed the cost of those
evaluators. A surprising amount of our effort was spent on mapping flightstick buttons to
navigation tasks (pan, zoom, rotate, heading, pitch, roll), but we found it paid off with more
effective, intuitive mappings.
As mentioned earlier, we went through four major iterations of the Dragon interaction
design, based on our evaluations. The first iteration, the "Virtual Sandtable," was an
egocentric navigation metaphor based on the sandtable concept briefly described earlier.
This was the version demonstrated in the military exercises also mentioned previously. A
key finding of this iteration was that users wanted a terrain-following capability, allowing
them to "fly" over the map - an egocentric design. Map-based navigation worked well when
globally manipulating the environment and conducting operations on large-scale units.
However, for small-scale operations, users wanted this "fly" capability to visually size up
terrain features, entity placement, fields of fire, lines of sight, etc.
The second iteration, "Point and Go," used the framework of usability characteristics of VEs
to suggest various possibilities for an egocentric navigation metaphor design. This metaphor
attempted to avoid having different modes (and flightsick buttons) for different navigation
tasks because of known usability problems with moded interaction. Further, we based this
decision on how a person often navigates to an object or location in the real world; namely,
they point (or look) and then go (move) there. Our reasoning was that adopting this same
idea to egocentric navigation would simplify the design and at least loosely mimic the real
world. So in this design, a user simply pointed the flightstick toward a location or object of
interest, and pressed the trigger to fly there. We found that the single gesture to move about
was not powerful enough to support the diverse, complicated variety of navigation tasks

36

inherent in Dragon. Furthermore, a single gesture meant that all degrees of freedom were
controlled by that single gesture. This resulted in, for example, unintentional rolling when a
user only wanted to pan or zoom. Essentially we observed a control versus convenience
trade-off. Many navigation tasks (modes) were active simultaneously, which was convenient
but difficult to physically control for a user. With separate tasks (modes) there was less
convenience but physical control was easier because degrees of freedom were more limited
in each mode. In addition to these serious problems, we found that users wanted to rotate
around an object, such as to move completely around a tank. This indicated that Dragon
needed an exocentric rotate ability, which we added. This interesting finding showed that
neither a pure egocentric nor a pure exocentric metaphor was desirable; each metaphor has
aspects that are more or less useful depending on user goals. While this may seem obvious,
it was confirmed by users through our formative evaluation approach. Further, the somewhat
poor performance of what we thought was the natural "point and go" metaphor was rather
counterintuitive, and further demonstrates that mimicking VE design after the real world is
not always successful from the VE user's perspective.
The third iteration, "Modal," went from the extreme of all navigation tasks coupled on a
single button as in the previous iteration to a rather opposite design in which each navigation
task was a separate mode. Specifically, as a user clicked the left or right flightstick button,
Dragon cycled successively through the tasks of pan, zoom, pitch, heading, and exocentric
rotate. A small textual indicator was displayed on the Workbench to show the current mode.
Once a user had cycled to the desired task, the user simply moved the flightstick and that task
was enabled with no need to push any flightstick button. We observed that, as we expected,
it was very cumbersome for users to always have to cycle between modes, and it was obvious
that we still had not achieved a compromise between convenience and control.
In our fourth iteration of the Dragon interaction design, "Integrated Navigation," based on
the framework of usability characteristics of VEs and our own user observations of what
degrees of freedom could be logically coupled in the Dragon application, we produced a
hybrid design of the modeless/moded designs of prior iterations. Specifically, we coupled
pan and zoom onto the flightstick trigger, pitch and heading onto the left flightstick button,
and exocentric rotate and zoom onto the right flightstick button. This fourth generation
interaction design for Dragon finally achieved the desired convenience versus control
compromise. In our final formative evaluation studies, we found that at last we had a design
for navigation that seemed to work well. The only usability problem we observed was
minor: damping of map movement was too great and needed some adjustment, which we
made.

4.2. Dragon Summative Evaluations

As the formative evaluation cycles neared completion for Dragon, we began planning
summative studies for our navigation design. Design parameters that affect usability of
the VE navigation metaphor to be studied in our summative evaluations are those that, in
general, could not be decided from the formative evaluations. We identified 27 such
design parameters, shown in Table 1, that potentially affect the usability of user
navigation. The organization of these parameters is based on the framework of usability
characteristics of VEs. The four main areas of this framework are the bold headings in
Table 1, and our design parameters for navigation are grouped based on these areas.

Based on the framework of usability characteristics, observations during our evaluations,
extensive literature review, and our expertise in VE interaction design, we have narrowed

37

the numerous variables to four that we feel are most critical for navigation, and therefore
most important for the first cycle of summative evaluations. These four variables
(included in Table 1) and their level of treatment in our planned summative study are:

• navigation metaphor (ego- versus exocentric)
• gesture control (rate versus position of hand movement)
• visual presentation device (Workbench, desktop, CAVE)
• stereopsis (present versus absent)

This summative study is currently designed, and will be performed as soon as the Dragon application
runs on all three presentation devices. It is, we believe, one of the first formal studies to directly
compare three different VE devices using the same application and the same user tasks.

Design parameters for navigation evaluation

User Tasks Input Devices Virtual Model Presentation Devices

user scenarios Navigation viewpoint mode switching visual presentation
device

navigation presets Navigation degrees-
of-freedom

mode feedback stereopsis

gestures to trigger
actions

number of modes

speech input visual navigation aids

number of flightstick
buttons

dataset characteristics

input device type visual terrain
representatio

Movement deadspace visual (battlefield)
object representation

Movement damping visual input device
representation

user gesture work
volume

size of (battlefield)
objects

gesture mapping visual object
relationship
representation

button mapping map constrained vs.
floating

head tracking

Table 1. Design paramet srs for navigation, organiz ed by framework of usabi ity characteristics for
VEs (Gabbard and Hix, 1999)

38

5. CONCLUSION

Despite improvement in efforts to improve usability engineering of VEs, there still is not
nearly enough usability engineering applied during development of VEs. And there is still a
need more cost-effective, high-impact methods. As VEs become more mature, established
interaction techniques and generic tasks for VEs will emerge, and have the potential — as
they did with GUIs — to improve usability. But the design space and options for VEs is
enormously greater than that for GUIs, and VE applications tend to be much more complex
than many GUIS. So even "standard" interaction techniques, devices, and generic tasks for
VEs will help improve usability only by a small fraction. Usability engineering will continue
to be a necessary process if new and exciting VEs that are, in fact, usable and useful for their
users are to be created.

7. REFERENCES

Eberts, R. E., Unpublished lecture on task analysis: IE486 Work Design and Analysis II,
Purdue University (1999). Presentation is online at
http://palette.ecn.purdue.edu/~ie486/Class/Lecture/lectl4/sld001.htm

Gabbard, J. & Hix, Deborah. (1999). Usability Engineering for Virtual Environments
through a Taxonomy of Usability Characteristics. Currently submitted to Presence:
Teleoperators and Virtual Environments.

del Galdo, E.M., Williges, R.C., Williges, B.H., & Wixon, D.R. (1986). An Evaluation of
Critical Incidents for Software Documentation Design, In Proceedings of Thirtieth Annual
Human Factors Society Conference, Anaheim, CA.

Hackos, J. T. & Redish, J. C. (1998) User and Task Analysis for Interface Design. John
Wiley & Sons, Inc. New York.

Hix, D. & Hartson, H. R. (1993). Developing User Interfaces: Ensuring Usability through
Product & Process, John Wiley and Sons, Inc.

Hix, D., Swan, E. J., Gabbard, J. L., McGee, M., Durbin, J., & King, T. (1999a). User-
centered design and evaluation of a real-time battlefield visualization virtual environment. In
Proceedings of the IEEE VR'99 Conference. (NOTE: This paper was awarded Best
Technical Paper at the VR'99 Conference.)

Hix, D., Amento, B., Templeman, J. N., Schmidt-Nielsen, A., & Sibert, L. (1999b) An
Empirical Comparison of Interaction Techniques for Panning and Zooming in Desktop
Virtual Environments. Sumbitted to Journal of Human Factors.

Nielsen, J. (1994). Heuristic evaluation. In Usability Inspection Methods, chapter 2, pp. 25-
62. John Wiley & Sons.

Obeysekare, U., Williams, C, Durbin, J., Rosenblum, L., Rosenberg, R., Grinstein, F.,
Ramamurthi, R., Landsberg, A. & Sandberg, W. (1996). Virtual Workbench: A Non-
Immersive Virtual Environment for Visualizing and Interacting with 3D Objects for
Scientific Visualization. In Proceedings of IEEE Visualization'96, IEEE Computer Society
Press, pp. 345-349.

Scriven, M. (1967). The methodology of evaluation. In R. E. Stake (Ed.), Perspectives of
curriculum evaluation, American Educational Research Association Monograph. Chicago:
Rand McNally.

39

Stevens, F., L. Frances, and L. Sharp. (1997). User-friendly handbook for project evaluation:
science, mathematics, engineering, and technology education. NSF 93-152.

Swartz, K., Thakkar, U., Hix, D., & Brady, R. (1999). Evaluating the Usability of Crumbs: A
Case Study of VE Usability Engineering Methods, to appear in Proc. Third International
Immersive Projection Technology Conference, Stuttgart, Germany.

Williges, R. C. (1984). Evaluating Human-Computer Software Interfaces. In Proceedings of
International Conference on Occupational Ergonomics.

2.7 Degradation of fiber optic system under dynamic use and fabrication and test of large area array
(R.O. Claus and Staff- Task 1.4b.3) CDRL Data Item 0026, 0027

1.0 Tests of Mechanically-Flexible Display Arrays Formed by ESA Processing

During the program months, we have mechanically tested the robustness of the mechanically
flexible optoelectronic display demonstrator article that has been described in detail in prior
monthly reports. The display element was formed through the self-assembly of PPV and other
molecular precursors, using the process detailed in those reports.

The objective of our mechanical testing has been to investigate how flexing may degrade the
performance of either the mechanical actuation behavior of the thin films, or the optical light
emitting properties. First, as shown in Figure 1, ESA-formed active polymer thin films on
mechanically flexible ITO-coated polyester substrates were repeatedly bent by hand to form U-
shaped geometries, but without creasing.

Measurements of several properties prior to and after flexing, including UV-vis absorption, film
thickness as measured by multi-wavelength ellipsometry, and simple visual observation, were
used to observe potential variations in material quality. No variations were observed for six
samples flexed as shown for 50 cycles. Atomic force microscope images obtained prior to and
after flexing did not display any differences.

(a)

40

mm

(b)

(c)

Figure 1. Mechanical Testing of Active Device Polymer Formed by ESA Process on
Flexible Polyester Substrate.
Additional testing of LED arrays formed from such deposited films is shown in Figure 2. Here, the
qualitative "tape test" was used to verify good mechanical adhesion between the deposited thin film
layers and the substrate, and good mechanical integrity of the film itself. Transparent adhesive tape
was attached to LED array devices as shown in Figure 2 (a), and finger pressure was used to carefully
eliminate the formation of air bubbles between the adhesive and the multilayered thin film on the
substrate. Testing was performed by pulling the tape vertically with respect to the plane of the
substrate, as shown in Figure 2 (b). Visual inspection and microscopy did not reveal that any areas
were removed from the surface of the specimen, and characterization using UV-vis and ellipsometry
did not indicate the existence any variations between measurements made prior to or after testing.

2.8 Specification of design elements for intranet (Ken Reifsnider and Rick Habayeb- Task 1.5)
CDRL Data Item 0028,
A ship information management system (SMS) is needed to optimally tie ship systems together as an
intranet. A three-tier architecture is planned to provide connectivity, scalability, interoperability, and
flexibility of SMS. The three tiers are the client or presentation tier, a middle tier or application logic
tier and a databases tier. The middle tier is implemented by enterprise application servers. The
Ship/enterprise Application Servers (SAS) are software platforms that allow a developer to launch
intranet/internet applications. An application server provides a platform on which one can run middle-
tier business/ship logic. These servers are designed to support applications with transaction

41

processing, or with complex decision processing requirements such as passing targeting/tracking
information and mission planning data. SMS provides the intrinsic capability of generating and
distributing information in the network, e.g., targeting, mission planning, and command and control
information. Networking SMS with the VON will provide the desired interoperability realism in a
network centric environment. Computer network interoperability hardware, and network system
interoperability are projects that address the linkages of the network and its IPs. Through SMS,
network interoperability, wireless and mobile communication, basic and realistic modeling of the
network traffic and security can be optimized and evaluated. Profiling and Quality of Service
management metrics will be used to evaluate some of the effectiveness parameters of the network.
Visualization, human interaction, and collaboration tools will be used to optimize and evaluate the
NAVCIITI architecture and configuration. Ultimately, through the CAVE, the NAVCIITI test bed
can simulate "ship under attack" or a ship in "self-defense" mode. These simulations will build on the
ship performance models that reside in the databases. Displays are very important in the sensors and
communication hardware. Fiber optics LAN are very desirable to cope with the harsh EMI / RFI
environment aboard ships. Fiber optics LAN provides a huge bandwidth for optimal distribution of
data and imaging information.

2.9 Description of features of scalable VE Interfaces (Ron Kriz - Task 1.6.2). CDRL Data Item 0032
A prototype system that would allow participants at remote sites to collaborate in immersive
environments was created and tested. The prototype system is called the "Collaborative CAVE
Console" (CCC). The CCC was based on CAVERN soft and LMBO. System was demonstrated at
the NCSA Access Center on November 16, 1999 as part of Supercomputing 99 demonstration of
collaboration over high speed networks. Four workstations, each running CCC independently were
linked with "Network Virginia" to remote sites at Lynchburg, Shenandoah, and Arlington, Virginia.
At the NCSA Access Center at Arlington, Virginia, the CCC was running on a SGI Octane and desk
side Power Onyx that projected images onto an I-Desk ("one-walled CAVE"). Although voices could
be linked via the internet, in this demonstration voices were linked using a standard telephone
communication conference call. This same system was also demonstrated on September 22, 1999 at
the Hart Congressional Office Building in Washington D.C. where two SGI Octanes, located at the
Hart Office Bldg., were linked to the CAVE at Virginia Tech. We also plan on demonstrating the
CCC at the Inernet2 Studio in Richmond Virginia in the near future.

Scaling the CCC to the large scale CAVE was not possible because the large scaled CAVE structure
was not built. The extension of CCC to the General Dynamics "Command Post "of the Future was
also not realized because this project was not funded.

l)Design requirements for high speed distributed collaborative immersive VEs, and 2) downloadable
prototype of collaborative immersive tools used between remote sites are posted on the web page:
http://www.sv.vt.edu/future/cave/software/ccc/

Test and evaluation of prototype usefulness with recommendations for full scale system is work-in-
progress.

42

NAVCIITI Total Project Budget vs. Actual Expenditures + Commitments

$3,000,000

$2,500,000

$2,000,000

«» $1,500,000

$1,000,000

$500,000

- Budget

-Actual

<§> # # # # # & & <$> & <$> ,# <£ <$ <£ J> # o° <$ jf> o° s?
</ / <* ^' ^' jfi ^ ^ ^ <# O* ^ </ ^ <# ^ ^ ^ ^ * ^ ^

3.0 Financial Status

43

